FRESHWATER BIOMONITORING – OPPORTUNITIES FOR OMICS MINATURISATION

DR DANIEL READ
CENTRE FOR ECOLOGY & HYDROLOGY, WALLINGFORD
Current regulatory monitoring - WFD

- WFD - established a framework for Community action in the field of water policy in October 2000
- Commits EU member states to achieve **good qualitative** and **quantitative** status of all water bodies by 2015

1. Biological quality
2. Physical-chemical quality
3. Hydromorphological quality
4. Chemical quality
Current regulatory monitoring - WFD

Macrophytes
- Macrophyte Prediction & Classification System (LEAFPACS)
- Canonical Correlation Analysis Based Assessment System (CBAS)

Phytoplankton
- Diatoms for Assessing River Ecological Status (DARES)

Benthic Invertebrates
- River Invertebrate Classification Tool (RCIT)
- RIVPACS

EU Water Framework Directive

Fish
- Fisheries Classification Scheme (FCS)

Phytobenthos
- Diatoms for Assessing River Ecological Status (DARES)
- Trophic Diatom Index (TDI)
Can omics replace current ‘traditional’ methods?

Need to be
1. Faster
2. Cheaper
3. Higher resolution
4. More reliable

Trophic Diatom Index (TDI)

- Changes in the species composition and abundance of the benthic diatom flora
- Includes measures of diversity, biomass and presence/absence/abundance of key taxa
Other freshwater applications for omics

Cyanobacteria/cyanotoxin genes

Pathogens

Antibiotic resistance

Microbial ecology
River Wolf molecular monitoring

- 20 sites
- 3 above Roadford lake, 17 below
- Triplicate samples (stone scrapes) at each site
- Bacterial (16S) and Eukaryotic (18S) pyrosequencing
Environmental DNA (eDNA)

Factors influencing detection of eDNA from a stream-dwelling amphibian

DAVID S. FILLIOD,1,2 CAREN S. GOLDBERG,1 ROBERT S. ARKLE1 and LISETTE P. WAITS2

1Forest and Rangeland Ecosystem Science Center, U.S. Geological Survey, Boise, ID 83702, USA
2Fish and Wildlife Sciences, University of Idaho, Moscow, ID 83843-1936, USA

Environmental monitoring using next generation sequencing: rapid identification of macroinvertebrate bioindicator species

Melissa E. Carew1, Vincent J. Pettigrove1, Leon Metzeling2 and Amy A. Hoffmann1,2

Analytical and methodological development for improved surveillance of the Great Crested Newt
Example of current technologies

Monterey Bay Aquarium Research Institute

Environmental Sampling Processor (ESP)

Remote, subsurface detection of the algal toxin domoic acid onboard the Environmental Sample Processor: Assay development and field trials

Gregory J. Doucette,*, Christina M. Mikulski,*, Kelly L. Jones, Kristen L. King, Dianne L. Greenfield, Roman Marin III, Scott Jensen, Brent Roman, Christopher T. Elliott, Christopher A. Scholin

*Monterey Bay Aquarium Research Institute, 775 Sanddollar Rd., Moss Landing, CA 95039, USA
†Wake H. Branch Institute for Marine and Coastal Sciences, University of North Carolina, Morehead City Laboratory, 131 Front Street, Morehead City, NC 28557, USA
‡Institute of Agri-Food and Land Use (IAF Li), Queen’s University, Belfast BT2 7AD, Northern Ireland BT2 7AG, UK

- 125 ml whole water sample
- 0.45 μm filter
- 2 ml homogenate
Example of current technologies

Flow-through PCR module

http://www.mbari.org/ESP/
THANK YOU

Any Questions?...